

ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ТЕХНИЧЕСКОМУ РЕГУЛИРОВАНИЮ И МЕТРОЛОГИИ

СВИДЕТЕЛЬСТВО

об утверждении типа средств измерений

BY.C.35.999.A № 48024

Срок действия до 11 сентября 2017 г.

НА<mark>ИМЕНО</mark>ВАНИЕ ТИПА СРЕДСТВ ИЗМЕРЕНИЙ ИЗМерители иммитанса **Е7-20**

<mark>ИЗГОТОВИТЕЛЬ

ОАО "МНИПИ", г. Минск, Республика Беларусь</mark>

РЕГИСТРАЦИОННЫЙ № 27904-12

ДОКУМЕНТ НА ПОВЕРКУ МП. МН 1353-2004

ИНТЕРВАЛ МЕЖДУ ПОВЕРКАМИ 1 год

Тип средств измерений утвержден приказом Федерального агентства по техническому регулированию и метрологии от 11 сентября 2012 г. № 740

Описание типа средств измерений является обязательным приложением к настоящему свидетельству.

Заместитель Руководителя		Ф.В.Булыгин
Федерального агентства		
	" "	2012 г.

Nº 006440

ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Измерители иммитанса Е7-20

Назначение средства измерений

Измерители иммитанса Е7-20 (далее приборы) предназначены для измерения емкости, индуктивности, сопротивления, проводимости, тангенса угла потерь, добротности, модуля комплексного сопротивления, угла фазового сдвига комплексного сопротивления и тока утечки электрорадиоэлементов в диапазоне частот от 25 Гц до 1 МГц при синусоидальном напряжении и при представлении параметров объектов по параллельной или последовательной двухэлементной схеме замещения.

Описание средства измерений

В основу работы прибора положен метод вольтметра-амперметра. Иммитансные параметры измеряемого объекта преобразуются в два напряжения, одно из которых пропорционально току, протекающему через исследуемый объект, другое — напряжению на нем. Отношение этих напряжений равно комплексной проводимости или комплексному сопротивлению объекта. Измерение отношения напряжений и расчет иммитансных параметров исследуемого объекта проводится с помощью встроенного микропроцессора.

Рисунок 1 – Внешний вид измерителя иммитанса Е7-20

Рисунок 2 — Схема пломбировки прибора

Метрологические и технические характеристики

r r · · · · · · · · · · · · · · · · · ·
Напряжение питания переменного тока частотой (50±1) Гц,
Классы точности по ГОСТ 25242-93
Диапазон установки рабочей частоты от 25 Гц до 1 МГц
Разрешение установки рабочей частоты
– в поддиапазоне от 25 до 999 Гц.1 Гц
– в поддиапазоне от 1 кГц до 1 МГц1 кГц
Пределы допускаемой относительной погрешности установки рабочей частоты ±0,02 %
Диапазон измерений сопротивления (R_s , R_p) от 0,01 мОм до 1 ГОм
Диапазон измерений индуктивности (L_s, L_p) от 0,01 нГн до 10 кГн
Диапазон измерений емкости (Cs, Cp) от 0,001 пФ до 1 Ф
Диапазон измерений проводимости (G_p) от 0,01 нСм до 10 См
Диапазон измерений тангенса угла потерь (D) и добротности (Q) от 10^{-4} до 10^4
Диапазон измерений угла фазового сдвига комплексного сопротивления (ф) от -90° до +90°
Диапазон измерений тока утечки (I)
Номинальная цена единицы наименьшего разряда отсчетного устройства1×10 ⁻⁵

Пределы допускаемой основной относительной погрешности измерений по R_s , R_p , G_p , L_s , L_p , C_s , C_p , X_s , I, и абсолютной погрешности измерений по D, Q, ϕ приведены в таблице 1.

Таблица 1 — Пределы допускаемой основной погрешности измерений

Измеряемый па-	D, Q	Пределы допускаемой основной погрешности		
раметр	(в относ. единицах)			
$R_s, R_p, G_p,$	$Q \le 0,1$	$\delta_{ m R} = \delta_{ m G} = \ \delta_{ m Z}$		
	Q > 0,1	$\delta_{\rm R} = \delta_{\rm G} = \delta_{\rm Z} \cdot (1 + {\rm Q})$		
$L_{s,}L_{p}$	D ≤ 0,1	$\delta_{L} = \delta_{Z}$		
	D > 0,1	$\delta_{L} = \delta_{Z} \cdot (1 + D)$		
C_s, C_p	D ≤ 0,1	$\delta_{\rm C} = \delta_{\rm Z}$		
	D > 0,1	$\delta_{\rm C} = \delta_{\rm Z} \cdot (1 + {\rm D})$		
X_s	D ≤ 0,1	$\delta_{\rm X} = \delta_{\rm Z}$		
	D > 0,1	$\delta_{X} = \delta_{Z} \cdot (1 + D)$		
D	D ≤ 1	$\Delta_{\rm D} = (\delta_{\rm Z} / 100 \%) \cdot (1 + 10 \rm D)$		
	D > 1	$\delta_{\rm D} = \delta_{\rm Z} \cdot (10 + {\rm D})$		
Q	Q > 1	$\delta_{\mathbf{Q}} = \delta_{\mathbf{Z}} \cdot (10 + \mathbf{Q})$		
	Q ≤ 1	$\Delta_{\rm Q} = (\delta_{\rm Z} / 100 \%) \cdot (1 + 10 \rm Q)$		
φ		$\Delta_{\varphi} = (\delta_{\rm Z}/1 \%) \cdot 1^{\circ}$		
I		$δ_{\rm I} = \pm (3 + 10 \text{ MKA/I}) \%$		
Примечание – Значения δ_Z указаны в таблице 2.				

Диапазоны измерений и пределы допускаемой основной относительной погрешности измерений модуля комплексного сопротивления | Z| при напряжении измерительного сигнала 1 В соответствуют значениям, указанным в таблице 2.

Таблица 2 - Пределы допускаемой основной относительной погрешности измерений модуля комплексного сопротивления

Предел	Диапазон изме-	Пределы допускаемой основной погрешности δ_{z} , %, при частотах					
измерений Z	рений Z	от 25 до	от 100 до	1 кГц	св 1 до	св 10 до	св 100 до
		99 Гц	999 Гц		10 кГц	100 кГц	1000 кГц
10 МОм	(1 – 10) МОм	±1,0	±0,5	±0,4	-	-	-
1 МОм	(0,1 - 1) МОм	±1,0	±0,3	±0,2	±0,5	-	-
100 кОм	(10 - 100) кОм	±0,5	±0,2	±0,1	±0,2	±0,9	-

Предел	Диапазон изме-	Пределы допускаемой основной погрешности δ_Z , %, при частотах					
измерений Z	рений Z	от 25 до	от 100 до	1 кГц	св 1 до	св 10 до	св 100 до
		99 Гц	999 Гц		10 кГц	100 кГц	1000 кГц
10 кОм	(1 - 10) кОм	±0,5	±0,2	±0,1	±0,2	±0,5	±2,0
1 кОм	(0,1 - 1) кОм	±0,5	±0,2	±0,1	±0,2	±0,5	±1,0
100 Ом	(10 - 100) Ом	±0,6	±0,3	±0,2	±0,3	±0,5	±1,0
10 Ом	(1 - 10) Ом	±1,0	±0,5	±0,3	±0,4	±0,8	±3,0
1 Ом	(0,1 - 1) Ом	±1,0	±0,7	±0,4	±0,4	±0,9	-

Дополнительная погрешность измерений параметров иммитанса, вызванная изменением температуры окружающего воздуха от (20 ± 2) °C до любой в пределах рабочих условий применения на каждые 10 °C, не более половины предела допускаемой основной погрешности.

Диапазон установки напряжения измерительного сигнала от 40 мВ до 1 В (среднее квадратическое значение) с дискретностью 20 мВ.

Пределы допускаемой относительной погрешности установки напряжения измерительного сигнала при частоте 1 к Γ ц, %:

сигнала при частоте 1 кГц, %:
– в диапазоне до 100 мВ включительно,±10
– в диапазоне свыше 100 мВ, ±3
Выходное сопротивление источника измерительного сигнала, Ом(100±20)
Диапазон установки напряжения смещения внутреннего источника, Вот 0 до 40
– в диапазоне от 0 до 4 В с дискретностью, мВ
– в диапазоне свыше 4 до 40 B с дискретностью, мВ
Пределы допускаемой погрешности установки напряжения смещения внутреннего источника:
– в диапазоне от 0 до 100 мВ включительно, мВ,±10
– в диапазоне свыше 100 мВ, %,
Диапазон установки напряжения смещения внешнего источника, В,от 0 до 120
Ограничительное сопротивление цепи подачи внешнего смещения и ограничительное
сопротивление цепи контроля напряжения смещения, кОм,
Время одного измерения (без времени выбора предела измерений) при частоте измерительного сигнала 1 кГц:
– в режиме «Норма», c, не более1
– в режиме «Быстро», с, не более0,1
Сервисные функции:
 – автоматическая компенсация начальных параметров присоединительных
устройств (ло ± 1 нСм по G_{-} при отключенном, объекте измерений и ± 1 мОм по R при

- автоматическая компенсация начальных параметров присоединительных устройств (до \pm 1 нСм по G_p , при отключенном объекте измерений и \pm 1мОм по R при коротком замыкании);
 - автоматический и ручной выбор предела измерений | Z |;
 - автоматический внутренний запуск;
 - допусковый контроль измеряемых параметров;
 - определение процентных отклонений измеряемых параметров от заданной величины;
 - передача-прием информации по стандартному интерфейсу RS-232C.

Время установления рабочего режима, мин, не более	15
Время непрерывной работы, ч, не менее	16
Потребляемая мощность, В-А, не более.	20
Рабочие условия применения:	

- аоочие условия применения.
 - температура окружающего воздуха, °С, от 5 до 40

 - атмосферное давление, кПа (мм рт. ст.),от 84 до 106,7 (от 630 до 800)

Предельные условия транспортирования:

– температура окружающего воздуха, °C,от минус 30 до плюс 70
- относительная влажность воздуха, $%$,
– атмосферное давление, кПа (мм рт. ст.),от 84 до 106,7 (от 630 до 800)
Средний срок службы, лет5
Средняя наработка на отказ, ч 15 000
Среднее время восстановления работоспособного состояния, ч
Приборы по требованиям электробезопасности соответствуют классу защиты I по ГОСТ Р
51350-99 Безопасность электрических контрольно-измерительных приборов и лабораторного
оборудования.

Знак утверждения типа

наносится на шильдик, расположенный на задней панели прибора, методом офсетной печати и на эксплуатационную документацию типографским методом.

Комплектность средства измерений

Измеритель иммитанса Е7-20	1 шт.
Шнур соединительный	1 шт.
Устройство присоединительное УП-1	1 шт.
Устройство присоединительное УП-2	1 шт.
Кабель	4 шт.
Кабель интерфейсный	1 шт.
Вставка плавкая 0,5 А	2 шт.
Руководство по эксплуатации	1 экз.
Методика поверки	1 экз.
Упаковка	1 шт.

Поверка

осуществляется по документу «Измеритель иммитанса Е7-20. Методика поверки» МП. МН 1353-2004, утвержденному ГЦИ СИ ФГУП «ВНИИМ им. Д.И. Менделеева» в 2004 г. Основные средства поверки:

меры сопротивления Н2-1;

мера сопротивления Р4017;

магазин сопротивления Р4830/1;

меры емкости Р597;

меры индуктивности Р5105, Р5107, Р5109, Р5113, Р5115;

мегаомметр Е6-22;

частотомер Ч3-63.

Сведения о методиках (методах) измерений

приведены в Руководстве по эксплуатации «Измеритель иммитанса Е7-20».

Нормативные и технические документы, устанавливающие требования к измерителям иммитанса E7-20

ГОСТ 8.019-85 ГСИ. Государственный специальный эталон и государственная поверочная схема для средств измерений тангенса угла потерь

ГОСТ 8.028-86 ГСИ. Государственный первичный эталон и государственная поверочная схема для средств измерений электрического сопротивления

ГОСТ 8.029-80 ГСИ. Государственный первичный эталон и общесоюзная поверочная схема для средств измерений индуктивности

ГОСТ 8.371-80 ГСИ. Государственный первичный эталон и общесоюзная поверочная схема для средств измерений емкости

ГОСТ 25242-93 Измерители параметров иммитанса цифровые. Общие технические требования и методы испытаний ТУ РБ 100039847.042-2004 «Измеритель иммитанса Е7-20»

Рекомендации по областям применения в сфере государственного регулирования обеспечения единства измерений

выполнение работ по оценке соответствия промышленной продукции и продукции других видов, а также иных объектов, установленным законодательством $P\Phi$ обязательным требованиям (производство электро- и радиокомпонентов, разработка новых материалов).

Изготовитель

ОАО «МНИПИ»,

Адрес: 220113, Республика Беларусь, г. Минск, ул. Я. Коласа, 73

Телефон: (017)262-21-79, факс:(017)2628881

Экспертиза проведена

ГЦИ СИ ФГУП «ВНИИМ им. Д.И. Менделеева», зарегистрирован в Государственном реестре под № 30001-10 Адрес: 190005, г. Санкт-Петербург, Московский пр., д. 19

Тел./ факс: (812) 323-96-21 E-mail: <u>Y.P.Semenov@vniim.ru</u>

Заместитель Руководителя Федерального агентства по техническому регулированию и метрологии

Ф.В.Булыгин

М.п. «__»____2012 г.